Biomedicine & Pharmacotherapy (Jul 2024)

SH-Alb inhibits phenotype remodeling of pro-fibrotic macrophage to attenuate liver fibrosis through SIRT3-SOD2 axis

  • Nijin Wu,
  • Shujun Ma,
  • Han Ding,
  • Huiling Cao,
  • Tiantian Liu,
  • Miaomiao Tian,
  • Qiqi Liu,
  • Hongjun Bian,
  • Zhen Yu,
  • Chenxi Liu,
  • Le Wang,
  • Yuemin Feng,
  • Hao Wu,
  • Jianni Qi

Journal volume & issue
Vol. 176
p. 116919

Abstract

Read online

Albumin has a variety of biological functions, such as immunomodulatory and antioxidant activity, which depends largely on its thiol activity. However, in clinical trials, the treatment of albumin by injection of commercial human serum albumin (HSA) did not achieve the desired results. Here, we constructed reduced modified albumin (SH-Alb) for in vivo and in vitro experiments to investigate the reasons why HSA did not achieve the expected effects. SH-Alb was found to delay the progression of liver fibrosis in mice by alleviating liver inflammation and oxidative stress. Although R-Alb also has some of the above roles, the effect of SH-Alb is more remarkable. Mechanism studies have shown that SH-Alb reduces the release of pro-inflammatory and pro-fibrotic cytokine through the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, SH-Alb deacetylates SOD2, a key enzyme of mitochondrial reactive oxygen species (ROS) production, by promoting the expression of SIRT3, thereby reducing the accumulation of ROS. Finally, macrophages altered by R-Alb or SH-Alb can inhibit the activation of hepatic stellate cells and endothelial cells, further delaying the progression of liver fibrosis. These results indicate that SH-Alb can remodel the phenotype of macrophages, thereby affecting the intrahepatic microenvironment and delaying the process of liver fibrosis. It provides a good foundation for the application of albumin in clinical treatment.

Keywords