Cell Death and Disease (Dec 2021)

LAMTOR5-AS1 regulates chemotherapy-induced oxidative stress by controlling the expression level and transcriptional activity of NRF2 in osteosarcoma cells

  • Youguang Pu,
  • Yiao Tan,
  • Chunbao Zang,
  • Fangfang Zhao,
  • Cifeng Cai,
  • Lingsuo Kong,
  • Hui Deng,
  • Fengmei Chao,
  • Ran Xia,
  • Minghua Xie,
  • Fangfang Ge,
  • Yueyin Pan,
  • Shanbao Cai,
  • Dabing Huang

DOI
https://doi.org/10.1038/s41419-021-04413-0
Journal volume & issue
Vol. 12, no. 12
pp. 1 – 15

Abstract

Read online

Abstract Long-noncoding RNAs (lncRNAs) play roles in regulating cellular functions. High-throughput sequencing analysis identified a new lncRNA, termed LAMTOR5-AS1, the expression of which was much higher in the chemosensitive osteosarcoma (OS) cell line G-292 than in the chemoresistant cell line SJSA-1. Further investigations revealed that LAMTOR5-AS1 significantly inhibits the proliferation and multidrug resistance of OS cells. In vitro assays demonstrated that LAMTOR5-AS1 mediates the interaction between nuclear factor erythroid 2-related factor 2 (NFE2L2, NRF2) and kelch-like ECH-associated protein 1 (KEAP1), which regulate the oxidative stress. Further mechanistic studies revealed that LAMTOR5-AS1 inhibited the ubiquitination degradation pathway of NRF2, resulting in a higher level of NRF2 but a loss of NRF2 transcriptional activity. High level of NRF2 in return upregulated the downstream gene heme oxygenase 1 (HO-1). Moreover, NRF2 controls its own activity by promoting LAMTOR5-AS1 expression, whereas the feedback regulation is weakened in drug-resistant cells due to high antioxidant activity. Overall, we propose that LAMTOR5-AS1 globally regulates chemotherapy-induced cellular oxidative stress by controlling the expression and activity of NRF2.