Insights into Early Steps of Decanoic Acid Self-Assemblies under Prebiotic Temperatures Using Molecular Dynamics Simulations
Romina V. Sepulveda,
Christopher Sbarbaro,
Ma Cecilia Opazo,
Yorley Duarte,
Fernando González-Nilo,
Daniel Aguayo
Affiliations
Romina V. Sepulveda
Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
Christopher Sbarbaro
Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
Ma Cecilia Opazo
Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Manuel Montt 948, Providencia 7500000, Chile
Yorley Duarte
Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
Fernando González-Nilo
Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
Daniel Aguayo
Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
The origin of life possibly required processes in confined systems that facilitated simple chemical reactions and other more complex reactions impossible to achieve under the condition of infinite dilution. In this context, the self-assembly of micelles or vesicles derived from prebiotic amphiphilic molecules is a cornerstone in the chemical evolution pathway. A prime example of these building blocks is decanoic acid, a short-chain fatty acid capable of self-assembling under ambient conditions. This study explored a simplified system made of decanoic acids under temperatures ranging from 0 °C to 110 °C to replicate prebiotic conditions. The study revealed the first point of aggregation of decanoic acid into vesicles and examined the insertion of a prebiotic-like peptide in a primitive bilayer. The information gathered from this research provides critical insights into molecule interactions with primitive membranes, allowing us to understand the first nanometric compartments needed to trigger further reactions that were essential for the origin of life.