Materials (Jun 2024)

Fracture Behavior and Mechanism of Nb-Si-Based Alloys with Heterogeneous Layered Structure

  • Sheng Wang,
  • Xiaoli Wang,
  • Zhiming Wang,
  • Zhiping Sun,
  • Weicheng Ye,
  • Qihu Zhao

DOI
https://doi.org/10.3390/ma17112735
Journal volume & issue
Vol. 17, no. 11
p. 2735

Abstract

Read online

Novel Nb-Si-based alloys with heterogeneous layers that have the same composition (Nb-16 at.%Si) but different phase morphologies were designed in this work. Heterogeneous layered structure (HLS) was successfully fabricated in Nb-16Si alloys by layering composite powders after various degrees of mechanical alloying (6 h, 12 h, 18 h, and 24 h) alternately and subsequent spark plasma sintering (SPS). The influence of HLS on the fracture behavior at both room and elevated temperature was investigated via single-edge notched bending (SENB) and high-temperature compression, respectively. The results show that the diversified HLS is obtained by combining hard layers containing fine equiaxed crystals and/or soft ones with coarse lamellar niobium solid solution (Nbss). By affecting the crack propagation in SENB, HLS is favorable for improving the fracture toughness and exhibits a significant increase compared with the corresponding homogenous microstructure. Moreover, for the same HLS, a more excellent performance is achieved when the initial crack is located in the soft layer and extended across the interface to the hard one through crack bridging, crack deflection, crack branching, and shielding effect. Fracture starts in the soft layer (from powders of ball-milled for 12 h) of a 12–24 alloy, and a maximum KQ value (14.89 MPa·mm1/2) is consequently obtained, which is 33.8% higher than that of the homogeneous Nb-16Si alloy. Furthermore, the heterogeneous layered alloys display superior high-temperature compression strength, which is attributable to the dislocation multiplication and fine-grained structure. The proposed strategy in this study offers a promising route for fabricating Nb-Si-based alloys with optimized and improved mechanical properties to meet practical applications.

Keywords