International Journal of Molecular Sciences (Aug 2021)

Neoantigen-Specific T-Cell Immune Responses: The Paradigm of NPM1-Mutated Acute Myeloid Leukemia

  • Fabio Forghieri,
  • Giovanni Riva,
  • Ivana Lagreca,
  • Patrizia Barozzi,
  • Francesca Bettelli,
  • Ambra Paolini,
  • Vincenzo Nasillo,
  • Beatrice Lusenti,
  • Valeria Pioli,
  • Davide Giusti,
  • Andrea Gilioli,
  • Corrado Colasante,
  • Laura Galassi,
  • Hillary Catellani,
  • Francesca Donatelli,
  • Annalisa Talami,
  • Rossana Maffei,
  • Silvia Martinelli,
  • Leonardo Potenza,
  • Roberto Marasca,
  • Enrico Tagliafico,
  • Rossella Manfredini,
  • Tommaso Trenti,
  • Patrizia Comoli,
  • Mario Luppi

DOI
https://doi.org/10.3390/ijms22179159
Journal volume & issue
Vol. 22, no. 17
p. 9159

Abstract

Read online

The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.

Keywords