Symmetry (Jan 2023)

Nonlinear Adaptive Fuzzy Control Design for Wheeled Mobile Robots with Using the Skew Symmetrical Property

  • Yung-Hsiang Chen,
  • Yung-Yue Chen

DOI
https://doi.org/10.3390/sym15010221
Journal volume & issue
Vol. 15, no. 1
p. 221

Abstract

Read online

This research presents a nonlinear adaptive fuzzy control method as an analytical design and a simple control structure for the trajectory tracking problem in wheeled mobile robots with skew symmetrical property. For this trajectory tracking problem in wheeled mobile robots, it is not easy to find an analytical adaptive fuzzy control solution due to the complicated error dynamics between the controlled wheeled mobile robots and desired trajectories. For deriving the analytical adaptive fuzzy control law of this trajectory tracking problem, a filter link is firstly adopted to find the solvable error dynamics, then the research is based on the skew symmetrical property of the transformed error dynamics. This proposed nonlinear adaptive fuzzy control solution has the advantages of low computational resource consumption and elimination of modeling uncertainties. From the results for tracking two simulation scenarios (an S type trajectory and a square trajectory), the proposed nonlinear adaptive fuzzy control method demonstrates a satisfactory trajectory tracking performance for the trajectory tracking problem in wheeled mobile robots with huge modeling uncertainties and outperforms the existing H2 control method.

Keywords