Foods (Apr 2021)

Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia

  • Kornelia Kaczmarska,
  • Matthew Taylor,
  • Udayasika Piyasiri,
  • Damian Frank

DOI
https://doi.org/10.3390/foods10040801
Journal volume & issue
Vol. 10, no. 4
p. 801

Abstract

Read online

Demand for plant-based proteins and plant-based food products is increasing globally. This trend is driven mainly by global population growth and a consumer shift towards more sustainable and healthier diets. Existing plant-based protein foods and meat mimetics often possess undesirable flavor and sensory properties and there is a need to better understand the formation of desirable meat-like flavors from plant precursors to improve acceptance of novel high-protein plant foods. This study aimed to comprehensively characterize the non-volatile flavor metabolites and the volatiles generated in grilled meat (beef, chicken, and pork) and compare these to commercially available meat substitutes and traditional high-protein plant-based foods (natto, tempeh, and tofu). Solid phase microextraction with gas-chromatography mass-spectrometry was used for elucidation of the flavor volatilome. Untargeted characterization of the non-volatile metabolome was conducted using Orbitrap mass spectrometry and Compound DiscovererTM datamining software. The study revealed greater diversity and higher concentrations of flavor volatiles in plant-based foods in comparison to grilled meat, although the odor activity of specific volatiles was not considered. On average, the total amount of volatiles in plant-based products were higher than in meat. A range of concentrations of free amino acids, dipeptide, tripeptides, tetrapeptides, nucleotides, flavonoids, and other metabolites was identified in meat and plant-based foods.

Keywords