Scientific Reports (Mar 2022)

Argonaute 2 is lost from neuromuscular junctions affected with amyotrophic lateral sclerosis in SOD1G93A mice

  • Dillon Shapiro,
  • Ryan Massopust,
  • Thomas Taetzsch,
  • Gregorio Valdez

DOI
https://doi.org/10.1038/s41598-022-08455-y
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 14

Abstract

Read online

Abstract miRNAs are necessary for neuromuscular junction (NMJ) health; however, little is known about the proteins required for their activity in this regard. We examined expression of Argonaute 2 (Ago2) and miRNA biogenesis genes in skeletal muscles during development, following nerve injury and in the SOD1G93A ALS mouse model. We found that these genes are enriched in neonate muscles and in adult muscles following nerve injury. Despite widespread NMJ deterioration, these genes were not increased in muscles of SOD1G93A mice. We also found that Ago2 distribution is linked to maturation, innervation, and health of NMJs. Ago2 increasingly concentrates in synaptic regions during NMJ maturation, disperses following experimental denervation and reconcentrates at the NMJ upon reinnervation. Similar to experimentally denervated muscles, a homogenous distribution of Ago2 was observed in SOD1G93A muscle fibers. To determine if Ago2 is necessary for the health of adult muscles, we excised Ago2 from Ago2fl/fl mice using adeno-associated virus mediated Cre recombinase expression. We observed modest changes in muscle histology after 3 months of Ago2 knockdown. Together, these data provide critical insights into the role of Ago2 and miRNA biogenesis genes in healthy and ALS-afflicted skeletal muscles and NMJs.