Remote Sensing (Feb 2024)
Approximation of a Convective-Event-Monitoring System Using GOES-R Data and Ensemble ML Models
Abstract
The presence of deep convective clouds is directly related to potential convective hazards, such as lightning strikes, hail, severe storms, flash floods, and tornadoes. On the other hand, Mexico has a limited and heterogeneous network of instruments that allow for efficient and reliable monitoring and forecasting of such events. In this study, a quasi-real-time framework for deep convective cloud identification and modeling based on machine learning (ML) models was developed. Eight different ML models and model assembly approaches were fed with Interest Fields estimated from Advanced Baseline Imager (ABI) sensor data on the Geostationary Operational Environmental Satellite-R Series (GOES-R) for one region in central Mexico and another in northeastern Mexico, both selected for their intense convective activity and high levels of vulnerability to severe weather. The results indicate that a simple approach such as Logistic Regression (LR) or Random Forest (RF) can be a good alternative for the identification and simulation of deep convective clouds in both study areas, with a probability of detection of (POD) ≈ 0.84 for Los Mochis and POD of ≈ 0.72 for Mexico City. Similarly, the false alarm ratio (FAR) ≈ 0.2 and FAR ≈ 0.4 values were obtained for Los Mochis and Mexico City, respectively. Finally, a post-processing filter based on lightning incidence (Lightning Filter) was applied with data from the Geostationary Lightning Mapper (GLM) of the GOES-16 satellite, showed great potential to improve the probability of detection (POD) of the ML models. This work sets a precedent for the implementation of an early-warning system for hazards associated with intense convective activity in Mexico.
Keywords