Regulating Blood Clot Fibrin Films to Manipulate Biomaterial-Mediated Foreign Body Responses
Yang Zou,
Zhengjie Shan,
Zongpu Han,
Jieting Yang,
Yixiong Lin,
Zhuohong Gong,
Lv Xie,
Jieyun Xu,
Runlong Xie,
Zhuofan Chen,
Zetao Chen
Affiliations
Yang Zou
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Zhengjie Shan
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Zongpu Han
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Jieting Yang
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Yixiong Lin
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Zhuohong Gong
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Lv Xie
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Jieyun Xu
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Runlong Xie
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Zhuofan Chen
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Zetao Chen
Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
The clinical efficacy of implanted biomaterials is often compromised by host immune recognition and subsequent foreign body responses (FBRs). During the implantation, biomaterials inevitably come into direct contact with the blood, absorbing blood protein and forming blood clot. Many studies have been carried out to regulate protein adsorption, thus manipulating FBR. However, the role of clot surface fibrin films formed by clotting shrinkage in host reactions and FBR is often ignored. Because of the principle of fibrin film formation being relevant to fibrinogen or clotting factor absorption, it is feasible to manipulate the fibrin film formation via tuning the absorption of fibrinogen and clotting factor. As biological hydroxyapatite reserved bone architecture and microporous structure, the smaller particle size may expose more microporous structures and adsorb more fibrinogen or clotting factor. Therefore, we set up 3 sizes (small, <0.2 mm; medium, 1 to 2 mm; large, 3 to 4 mm) of biological hydroxyapatite (porcine bone-derived hydroxyapatite) with different microporous structures to investigate the absorption of blood protein, the formation of clot surface fibrin films, and the subsequent FBR. We found that small group adsorbed more clotting factors because of more microporous structures and formed the thinnest and sparsest fibrin films. These thinnest and sparsest fibrin films increased inflammation and profibrosis of macrophages through a potential signaling pathway of cell adhesion–cytoskeleton–autophagy, leading to the stronger FBR. Large group adsorbed lesser clotting factors, forming the thickest and densest fibrin films, easing inflammation and profibrosis of macrophages, and finally mitigating FBR. Thus, this study deepens the understanding of the role of fibrin films in host recognition and FBR and demonstrates the feasibility of a strategy to regulate FBR by modulating fibrin films via tuning the absorption of blood proteins.