Adaptivni Sistemi Avtomatičnogo Upravlinnâ (Aug 2020)
Techniques and components for natural language processing
Abstract
A dramatic change in the abilities of language models to provide state of the art accuracy in a number of Natural Language Processing tasks is currently observed. These improvements open a lot of possibilities in solving NLP downstream tasks. Such tasks include machine translation, speech recognition, information retrieval, sentiment analysis, summarization, question answering, multilingual dialogue systems development and many more. Language models are one of the most important components in solving each of the mentioned tasks. This paper is devoted to research and analysis of the most adopted techniques and designs for building and training language models that show a state of the art results. Techniques and components applied in creation of language models and its parts are observed in this paper, paying attention to neural networks, embedding mechanisms, bidirectionality, encoder and decoder architecture, attention and self-attention, as well as parallelization through using Transformer. Results: the most promising techniques imply pre-training and fine-tuning of a language model, attention-based neural network as a part of model design, and a complex ensemble of multidimensional embeddings to build deep context understanding. The latest offered architectures based on these approaches require a lot of computational power for training language model and it is a direction of further improvement. Ref. 49, pic. 13
Keywords