International Journal of Distributed Sensor Networks (Apr 2012)
Energy Efficient MAC Protocol for Low-Energy Critical Infrastructure Monitoring Networks Using Wakeup Radio
Abstract
Critical infrastructure monitoring applications are rapidly increasing. Application requirements include reliable data transfer, energy efficiency, and long deployment lifetime. These applications must also be able to operate in an extremely low-cost communication environment in order to be attractive to potential users. A low rate wireless personal area network can help control and manage the operations of such applications. In this paper, we present a medium access control (MAC) protocol for low-energy critical infrastructure monitoring (LECIM) applications. The proposed MAC protocol is based on a framed slotted aloha multiple access schemes. For downlink communication, we use a wakeup radio approach to avoid complex bookkeeping associated with the traditional MAC protocols. Analytical expressions for power consumption and delay are derived to analyze and compare the performance of our proposed protocol with the existing well-known T-MAC, B-MAC, X-MAC, ZigBee, and WiseMAC protocols. It is shown that our proposed protocol outperforms all the other protocols in terms of power consumption and delay.