Biochemistry and Biophysics Reports (Jul 2024)

Vibrational spectroscopic detection of radiation-induced structural changes in Chironomus hemoglobin

  • Pallavi S. Gaikwad,
  • Arti Hole,
  • Vibha Saxena,
  • Sipra Choudhury,
  • Bimalendu B. Nath,
  • C. Murali Krishna,
  • Rita Mukhopadhyaya

Journal volume & issue
Vol. 38
p. 101721

Abstract

Read online

Purpose: Chironomus hemoglobin is known to exhibit higher gamma radiation resistance compared to human hemoglobin. In the present study, we have introduced a sensitive method to analyze radiation-induced alterations in Chironomus hemoglobin using Vibrational spectroscopy and further highlighting its potential for monitoring radiotoxicity in aquatic environments. Materials and methods: Vibrational spectroscopic methods such as Raman and FT-IR spectroscopy were used to capture the distinctive chemical signature of Chironomus hemoglobin (ChHb) under both in vitro and in vivo conditions. Any radiation dose-dependent shifts could be analyzed Human hemoglobin (HuHb) as standard reference. Results: Distinctive Raman peak detected at 930 cm-1 in (ChHb) was attributed to C–N stretching in the heterocyclic ring surrounding the iron atom, preventing heme degradation even after exposure to 2400 Gy dose. In contrast, for (HuHb), the transition from deoxy-hemoglobin to met-hemoglobin at 1210 cm-1 indicated a disruption in oxygen binding after exposure to 1200 Gy dose. Furthermore, while ChHb exhibited a consistent peak at 1652 cm-1 in FT-IR analysis, HuHb on the other hand, suffered damage after gamma irradiation. Conclusion: The findings suggest that vibrational spectroscopic methods hold significant potential as a sensitive tool for detecting radiation-induced molecular alterations and damages. Chironomus hemoglobin, with its robust interaction of the pyrrole ring with Fe, serves as a reliable bioindicator molecule to detect radiation damage using vibrational spectroscopic method.

Keywords