Genetics Selection Evolution (May 2022)

Quality of breeding value predictions from longitudinal analyses, with application to residual feed intake in pigs

  • Ingrid David,
  • Anne Ricard,
  • Van-Hung Huynh-Tran,
  • Jack C. M. Dekkers,
  • Hélène Gilbert

DOI
https://doi.org/10.1186/s12711-022-00722-w
Journal volume & issue
Vol. 54, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background An important goal in animal breeding is to improve longitudinal traits. The objective of this study was to explore for longitudinal residual feed intake (RFI) data, which estimated breeding value (EBV), or combination of EBV, to use in a breeding program. Linear combinations of EBV (summarized breeding values, SBV) or phenotypes (summarized phenotypes) derived from the eigenvectors of the genetic covariance matrix over time were considered, and the linear regression method (LR method) was used to facilitate the evaluation of their prediction accuracy. Results Weekly feed intake, average daily gain, metabolic body weight, and backfat thickness measured on 2435 growing French Large White pigs over a 10-week period were analysed using a random regression model. In this population, the 544 dams of the phenotyped animals were genotyped. These dams did not have own phenotypes. The quality of the predictions of SBV and breeding values from summarized phenotypes of these females was evaluated. On average, predictions of SBV at the time of selection were unbiased, slightly over-dispersed and less accurate than those obtained with additional phenotypic information. The use of genomic information did not improve the quality of predictions. The use of summarized instead of longitudinal phenotypes resulted in predictions of breeding values of similar quality. Conclusions For practical selection on longitudinal data, the results obtained with this specific design suggest that the use of summarized phenotypes could facilitate routine genetic evaluation of longitudinal traits.