mSystems (Aug 2022)

Dysbiosis of Gut Microbiota and Intestinal Barrier Dysfunction in Pigs with Pulmonary Inflammation Induced by Mycoplasma hyorhinis Infection

  • Yingying Zhang,
  • Yuan Gan,
  • Jia Wang,
  • Zhixin Feng,
  • Zhaoxin Zhong,
  • Hongduo Bao,
  • Qiyan Xiong,
  • Ran Wang

DOI
https://doi.org/10.1128/msystems.00282-22
Journal volume & issue
Vol. 7, no. 4

Abstract

Read online

ABSTRACT Lung inflammation induced by Mycoplasma hyorhinis infection accounts for significant economic losses in the swine industry. Increasing evidence suggests that there is cross talk between the lungs and the gut, but little is known about the effect of the lung inflammation caused by M. hyorhinis infection on gut microbiota and intestinal barrier function. Here, we investigated changes in the fecal microbiotas of pigs with M. hyorhinis infection and the microbial regulatory role of such infection in intestinal barrier function. We infected pigs with M. hyorhinis and performed 16S rRNA gene sequencing analyses of fecal samples, data-independent acquisition (DIA) quantitative proteomic analyses of intestinal mucosa, and analyses of barrier dysfunction indicators in serum. We found that pigs with M. hyorhinis infection exhibit lung and systemic inflammation, as reflected by the histopathological changes and activation of the TLR4/MyD88/NF-κB p65 signaling pathway in lung tissue, as well as the increased concentrations of serum inflammatory cytokines. Gut microbiotas tended to become disturbed, as evidenced by the enrichment of opportunistic pathogens. The increased diamine oxidase activities and d-lactate concentrations in serum and the decreased relative mRNA expression of Occludin, ZO-1, and Mucin2 indicated the impairment of intestinal barrier function. Quantitative proteomic analyses showed a variety of altered proteins involved in immunomodulatory and inflammatory functions. There was a positive correlation between the abundance of opportunistic pathogens and inflammatory-cytokine concentrations, as well as intestinal immunomodulatory proteins. Our results suggest that lung inflammation induced by M. hyorhinis infection can contribute to the dysbiosis of gut microbiota and intestinal barrier dysfunction, and dysbiosis of gut microbiota was associated with systemic inflammation and intestinal immune status. IMPORTANCE Cumulative evidence suggests that bacterial pneumonia may contribute to the dysbiosis of the gut microbiota and other gastrointestinal symptoms. Our experiment has demonstrated that lung inflammation induced by M. hyorhinis infection was associated with gut microbiota dysbiosis and intestinal barrier dysfunction, which may provide a theoretical basis for exploring the gut-lung axis based on M. hyorhinis infection.

Keywords