Applied Sciences (Nov 2023)
Design and Experiment of an Electric Control Spiral-Pushing Feed Mechanism for Field Fertilizer Applicator
Abstract
Due to the unique structural characteristics of the traditional spiral fertilizer applicator, the instantaneous filling coefficient cannot be determined, which is not conducive to achieving precise control of the fertilizer discharge rate. Therefore, a spiral-pushing fertilizer applicator has been designed. By using a structure of variable diameter and variable spiral pitch to squeeze fertilizer gradually, precise control of the fertilizer discharge is achieved. The study analyzes the effects of screw pitch, screw diameter, and rotational speed on the filling coefficient; it uses spiral pitch elongation percentage, spiral diameter elongation percentage, and rotational speed as experimental factors, and filling coefficient and particle axial velocity coefficient as experimental indicators. Through quadratic orthogonal rotation combination design experiments, the fertilizer discharge performance of the spiral-pushing fertilizer applicator was optimized. The experimental results indicate that for the filling coefficient, x1x2 has an extremely significant impact, while for the axial velocity coefficient of particles, x1 and x3 have an extremely significant impact. When the rotational speed x3 is 30 r/min, the optimized spiral pitch elongation percentage x1 is 189.82–200%, the spiral diameter elongation percentage x2 is 102.75–106.76, the filling coefficient is greater than 95%, and the particle axial velocity coefficient is less than 10%, achieving the best fertilizer discharge performance. An electrically controlled fertilizer discharge system was also designed, and bench tests were conducted on it. The results show that the average deviation between the fertilizer discharge performance of the spiral-pushing fertilizer applicator driven by the electrically controlled fertilizer discharge system and the preset value is 2.14%. This proves that, when the fertilizer demand changes, the fertilizer discharge flow can be adjusted through the electrically controlled fertilizer discharge system to achieve precise fertilization. This study provides a reference for the design of spiral fertilizer applicators.
Keywords