Nanophotonics (Aug 2019)

Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics

  • Tahersima Mohammad H.,
  • Ma Zhizhen,
  • Gui Yaliang,
  • Sun Shuai,
  • Wang Hao,
  • Amin Rubab,
  • Dalir Hamed,
  • Chen Ray,
  • Miscuglio Mario,
  • Sorger Volker J.

DOI
https://doi.org/10.1515/nanoph-2019-0153
Journal volume & issue
Vol. 8, no. 9
pp. 1559 – 1566

Abstract

Read online

Electro-optic signal modulation provides a key functionality in modern technology and information networks. Photonic integration has not only enabled miniaturizing photonic components, but also provided performance improvements due to co-design addressing both electrical and optical device rules. The millimeter to centimeter footprint of many foundry-ready electro-optic modulators, however, limits density scaling of on-chip photonic systems. To address these limitations, here we experimentally demonstrate a coupling-enhanced electro-absorption modulator by heterogeneously integrating a novel dual-gated indium-tin-oxide phase-shifting tunable absorber placed at a silicon directional coupler region. This concept allows utilizing the normally parasitic Kramers-Kronig relations here in an synergistic way resulting in a strong modulation depth to insertion loss ratio of about 1. Our experimental modulator shows a 2 dB extinction ratio for a just 4 μm short device at 4 V bias. Since no optical resonances are deployed, this device shows spectrally broadband operation as demonstrated here across the entire C-band. In conclusion, we demonstrate a modulator utilizing strong index change from both real and imaginary parts of active material enabling compact and high-performing modulators using semiconductor near-foundry materials.

Keywords