International Journal of Molecular Sciences (May 2021)

Interfacial Modeling of Fibrinogen Adsorption onto LiNbO<sub>3</sub> Single Crystal–Single Domain Surfaces

  • Jeffrey S. Cross,
  • Yasuhiro Kubota,
  • Abhijit Chatterjee,
  • Samir Unni,
  • Toshiyuki Ikoma,
  • Motohiro Tagaya

DOI
https://doi.org/10.3390/ijms22115946
Journal volume & issue
Vol. 22, no. 11
p. 5946

Abstract

Read online

For the development of next-generation protein-based biosensor surfaces, it is important to understand how functional proteins, such as fibrinogen (FBG), interact with polar substrate surfaces in order to prepare highly sensitive points of medical care diagnostics. FBG, which is a fibrous protein with an extracellular matrix, has both positively and negatively charged regions on its 3-dimensional surface, which makes interpreting how it effectively binds to polarized surfaces challenging. In this study, single-crystal LiNbO3 (LNO) substrates that have surface charges were used to investigate the adsorption of FBG protruding polar fragments on the positively and negatively charged LNO surfaces. We performed a combination of experiments and multi-scale molecular modeling to understand the binding of FBG in vacuum and water-solvated surfaces of LNO. XPS measurements showed that the FBG adsorption on LNO increased with increment in solution concentration on surfaces independent of charges. Multi-scale molecular modeling employing Quantum Mechanics, Monte Carlo, and Molecular Mechanics addressed the phenomenon of FBG fragment bonding on LNO surfaces. The binding simulation validated the experimental observation using zeta potential measurements which showed presence of solvated medium influenced the adsorption phenomenon due to the negative surface potential.

Keywords