Solar-Terrestrial Physics (Jun 2021)

GEOMAGNETIC DATA RECOVERY APPROACH BASED ON THE CONCEPT OF DIGITAL TWINS

  • A.V. Vorobev,
  • V.A. Pilipenko

DOI
https://doi.org/10.12737/stp-72202105
Journal volume & issue
Vol. 7, no. 2
pp. 48 – 56

Abstract

Read online

There is no ground-based magnetic station or observatory that guarantees the quality of information received and transmitted to it. Data gaps, outliers, and anomalies are a common problem affecting virtually any ground-based magnetometer network, creating additional obstacles to efficient processing and analysis of experimental data. It is possible to monitor the reliability and improve the quality of the hardware and soft- ware modules included in magnetic stations by develop- ing their virtual models or so-called digital twins. In this paper, using a network of high-latitude IMAGE magnetometers as an example, we consider one of the possible approaches to creating such models. It has been substantiated that the use of digital twins of magnetic stations can minimize a number of problems and limitations associated with the presence of emissions and missing values in time series of geomagnetic data, and also provides the possibility of retrospective forecasting of geomagnetic field parameters with a mean square error (MSE) in the auroral zone up to 11.5 nT. Integration of digital twins into the processes of collecting and registering geomagnetic data makes the automatic identification and replacement of missing and abnormal values possible, thus increasing, due to the redundancy effect, the fault tolerance of the magnetic station as a data source object. By the example of the digital twin of the station “Kilpisjärvi” (Finland), it is shown that the proposed approach implements recovery of 99.55 % of annual information, while 86.73 % with M not exceeding 12 nT.

Keywords