Sensors (Dec 2023)
Guided Acoustic Waves in Polymer Rods with Varying Immersion Depth in Liquid
Abstract
Monitoring tanks and vessels play an important part in public infrastructure and several industrial processes. The goal of this work is to propose a new kind of guided acoustic wave sensor for measuring immersion depth. Common sensor types such as pressure sensors and airborne ultrasonic sensors are often limited to non-corrosive media, and can fail to distinguish between the media they reflect on or are submerged in. Motivated by this limitation, we developed a guided acoustic wave sensor made from polyethylene using piezoceramics. In contrast to existing sensors, low-frequency Hanning-windowed sine bursts were used to excite the L(0,1) mode within a solid polyethylene rod. The acoustic velocity within these rods changes with the immersion depth in the surrounding fluid. Thus, it is possible to detect changes in the surrounding media by measuring the time shifts of zero crossings through the rod after being reflected on the opposite end. The change in time of zero crossings is monotonically related to the immersion depth. This relative measurement method can be used in different kinds of liquids, including strong acids or bases.
Keywords