Remote Sensing (Jul 2023)

Asymmetric Drifter Trajectories in an Anticyclonic Mesoscale Eddy

  • Pengfei Tuo,
  • Zhiyuan Hu,
  • Shengli Chen,
  • Jianyu Hu,
  • Peining Yu

DOI
https://doi.org/10.3390/rs15153806
Journal volume & issue
Vol. 15, no. 15
p. 3806

Abstract

Read online

The influences of sea surface wind on the oceanic mesoscale eddy are complex. By integrating our self-developed surface drifters with satellite observations, we examined the influence of sea surface wind on the distribution of water masses and biomass within the interior of an anticyclonic eddy. Ten drifters were deployed in the northern South China Sea in the spring of 2021. Eventually, six were trapped in an anticyclonic mesoscale eddy for an extended period. Interestingly, the drifters’ trajectories were not symmetric around the eddy center, displaying a significant offset of the distance from the wind turns to the southerly wind. Particle tracking experiments demonstrated that this departure could mainly be attributed to wind-driven ageostrophic currents. This is due to the strength of wind-driven ageostrophic currents being more comparable to geostrophic currents when accompanied by a deflection between the directions of the wind-driven current and the eddy’s translation. The drifters’ derived data indicated that sub-mesoscale ageostrophic currents within the eddy contributed to this asymmetric trajectory, with Ekman and non-Ekman components playing a role. Furthermore, the evolution of ocean color data provided corroborating evidence of these dynamic processes, highlighting the importance of ageostrophic processes within mesoscale eddies.

Keywords