ChemEngineering (Jun 2019)

Investigation of Thermal Behavior of Layered Double Hydroxides Intercalated with Carboxymethylcellulose Aiming Bio-Carbon Based Nanocomposites

  • Vagner R. Magri,
  • Alfredo Duarte,
  • Gustavo F. Perotti,
  • Vera R.L. Constantino

DOI
https://doi.org/10.3390/chemengineering3020055
Journal volume & issue
Vol. 3, no. 2
p. 55

Abstract

Read online

Carboxymethylcellulose (CMC), a polymer derived from biomass, was intercalated into layered double hydroxides (LDH) composed by M2+/Al3+ (M2Al-CMC, M = Mg or Zn) and evaluated as precursors for the preparation of biocarbon-based nanocomposites by pyrolysis. M2Al-CMC hybrids were obtained by coprecipitation and characterized by X ray diffraction (XRD), vibrational spectroscopies, chemical analysis, and thermal analysis coupled to mass spectrometry. Following, pyrolyzed materials obtained between 500−1000 °C were characterized by XRD, Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Above 600 °C, Raman spectra of all samples showed the presence of graphitic carbon, which plays a role in the degree of crystallinity of produced inorganic phases (for comparison purposes, M2Al-CO3 materials were investigated after calcination in the same experimental conditions). XRD patterns of Mg2Al-CMC pyrolyzed between 600−1000 °C showed poorly crystallized MgO and absence of spinel reflections, whereas for Zn2Al-CMC, it was observed well crystallized nanometric ZnO at 800 °C, and ZnAl2O4 and γ-Al2O3 phases at 1000 °C. Above 800 °C, the carbothermic reaction was noticed, transforming ZnO to zinc vapour. This study opens perspectives for nanocomposites preparation based on carbon and inorganic (mixed) oxides through precursors having organic-inorganic interactions at the nanoscale domain.

Keywords