Applied Sciences (Apr 2023)
Multi-Attention-Guided Cascading Network for End-to-End Person Search
Abstract
The key procedure is to accurately identify pedestrians in complex scenes and effectively embed features from multiple vision cues. However, it is still a limitation to coordinate two tasks in the unified framework, thus leading to high computational overhead and unsatisfactory search performance. Furthermore, most methods do not take significant clues and key features of pedestrians into consideration. To remedy these issues, we introduce a novel method named Multi-Attention-Guided Cascading Network (MGCN) in this paper. Specifically, we obtain the trusted bounding box through the detection header as the label information for post-process. Based on the end-to-end network, we demonstrate the advantages of jointly learning to construct the bounding box and attention module by maximizing the complementary information from different attention modules, which can achieve optimized person search performance. Meanwhile, by imposing an aligning module on re-id feature extracted network to locate visual clues with semantic information, which can restrain redundant background information. Extensive experimental results for the two benchmark person search datasets are provided to demonstrate that the proposed MGCN markedly outperforms the state-of-the-art baselines.
Keywords