International Journal of Molecular Sciences (Dec 2023)

Antarctic Krill Oil from <i>Euphausia superba</i> Ameliorates Carrageenan-Induced Thrombosis in a Mouse Model

  • Gi Ho Lee,
  • Seung Yeon Lee,
  • Ju Yeon Chae,
  • Jae Won Kim,
  • Jin-Hee Kim,
  • Hye Gwang Jeong

DOI
https://doi.org/10.3390/ijms242417440
Journal volume & issue
Vol. 24, no. 24
p. 17440

Abstract

Read online

FJH-KO obtained from Antarctic krill, especially Euphausia superba, has been reported to contain high amounts of omega-3 polyunsaturated fatty acids (n-3 PUFA) and to exhibit anticancer and anti-inflammatory properties. However, its antithrombotic effects have not yet been reported. This study aimed to investigate the antithrombotic effects of FJH-KO in carrageenan-induced thrombosis mouse models and human endothelial cells. Thrombosis was induced by carrageenan injection, whereas the mice received FJH-KO pretreatment. FJH-KO attenuated carrageenan-induced thrombus formation in mouse tissue vessels and prolonged tail bleeding. The inhibitory effect of FJH-KO was associated with decreased plasma levels of thromboxane B2, P-selectin, endothelin-1, β-thromboglobulin, platelet factor 4, serotonin, TNF-α, IL-1β, and IL-6. Meanwhile, FJH-KO induced plasma levels of prostacyclin I2 and plasminogen. In vitro, FJH-KO decreased the adhesion of THP-1 monocytes to human endothelial cells stimulated by TNF-α via eNOS activation and NO production. Furthermore, FJH-KO inhibited the expression of TNF-α-induced adhesion molecules such as ICAM-1 and VCAM-1 by suppressing the NF-κB signaling pathway. Taken together, our study demonstrates that FJH-KO protects against carrageenan-induced thrombosis by regulating endothelial cell activation and has potential as an antithrombotic agent.

Keywords