Cancer Cell International (Nov 2023)

Novel biomarker genes for the prediction of post-hepatectomy survival of patients with NAFLD-related hepatocellular carcinoma

  • Yuting Song,
  • Ying Wang,
  • Xin Geng,
  • Xianming Wang,
  • Huisi He,
  • Youwen Qian,
  • Yaping Dong,
  • Zhecai Fan,
  • Shuzhen Chen,
  • Wen Wen,
  • Hongyang Wang

DOI
https://doi.org/10.1186/s12935-023-03106-2
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background The incidence and prevalence of nonalcoholic fatty liver disease related hepatocellular carcinoma (NAFLD-HCC) are rapidly increasing worldwide. This study aimed to identify biomarker genes for prognostic prediction model of NAFLD-HCC hepatectomy by integrating text-mining, clinical follow-up information, transcriptomic data and experimental validation. Methods The tumor and adjacent normal liver samples collected from 13 NAFLD-HCC and 12 HBV-HCC patients were sequenced using RNA-Seq. A novel text-mining strategy, explainable gene ontology fingerprint approach, was utilized to screen NAFLD-HCC featured gene sets and cell types, and the results were validated through a series of lab experiments. A risk score calculated by the multivariate Cox regression model using discovered key genes was established and evaluated based on 47 patients’ follow-up information. Results Differentially expressed genes associated with NAFLD-HCC specific tumor microenvironment were screened, of which FABP4 and VWF were featured by previous reports. A risk prediction model consisting of FABP4, VWF, gender and TNM stage were then established based on 47 samples. The model showed that overall survival in the high-risk score group was lower compared with that in the low-risk score group (p = 0.0095). Conclusions This study provided the landscape of NAFLD-HCC transcriptome, and elucidated that our model could predict hepatectomy prognosis with high accuracy.

Keywords