Research and Improvement in Magnetic Field Sensors Using Mach–Zehnder Interferometer with Cobalt Ferrite Nanoparticles
Francisco Willame Coelho de Vasconcelos,
Matheus Rodrigues Araújo,
Luana Samara Paulino Maia,
Lidia Quirino Rodrigues,
Ianna Karollayne Alencar da Silva,
João Isaac Silva Miranda,
José Marcos Sasaki,
Marcus Aurélio Ribeiro Miranda,
Joacir Soares de Andrade,
Yosdan Martinez Camejo,
Glendo de Freitas Guimarães
Affiliations
Francisco Willame Coelho de Vasconcelos
Postgraduate Program in Materials Science and Engineering, Federal University of Ceará, Fortaleza-Campus Universitario do Pici-Bloco 729, Fortaleza 60440-554, Brazil
Matheus Rodrigues Araújo
Postgraduate Program in Materials Science and Engineering, Federal University of Ceará, Fortaleza-Campus Universitario do Pici-Bloco 729, Fortaleza 60440-554, Brazil
Luana Samara Paulino Maia
Postgraduate Program in Materials Science and Engineering, Federal University of Ceará, Fortaleza-Campus Universitario do Pici-Bloco 729, Fortaleza 60440-554, Brazil
Lidia Quirino Rodrigues
Postgraduate Program in Materials Science and Engineering, Federal University of Ceará, Fortaleza-Campus Universitario do Pici-Bloco 729, Fortaleza 60440-554, Brazil
Ianna Karollayne Alencar da Silva
Photonics Laboratory, Postgraduate Program in Telecommunications Engineering, Federal Institute of Education, Science, and Technology of Ceará, Fortaleza-Av. Treze de Maio, 2081-Benfica, Fortaleza 60040-531, Brazil
João Isaac Silva Miranda
Photonics Laboratory, Postgraduate Program in Telecommunications Engineering, Federal Institute of Education, Science, and Technology of Ceará, Fortaleza-Av. Treze de Maio, 2081-Benfica, Fortaleza 60040-531, Brazil
José Marcos Sasaki
Physics Department, Federal University of Ceara, Rua Prof. Armando Farias, Campus do Pici-Bloco 928, Fortaleza 60440-760, Brazil
Marcus Aurélio Ribeiro Miranda
Physics Department, Federal University of Luso-Afro-Brazilian Integration, Redenção 62790-000, Brazil
Joacir Soares de Andrade
Photonics Laboratory, Postgraduate Program in Telecommunications Engineering, Federal Institute of Education, Science, and Technology of Ceará, Fortaleza-Av. Treze de Maio, 2081-Benfica, Fortaleza 60040-531, Brazil
Yosdan Martinez Camejo
Photonics Laboratory, Postgraduate Program in Telecommunications Engineering, Federal Institute of Education, Science, and Technology of Ceará, Fortaleza-Av. Treze de Maio, 2081-Benfica, Fortaleza 60040-531, Brazil
Glendo de Freitas Guimarães
Photonics Laboratory, Postgraduate Program in Telecommunications Engineering, Federal Institute of Education, Science, and Technology of Ceará, Fortaleza-Av. Treze de Maio, 2081-Benfica, Fortaleza 60040-531, Brazil
In this work, a current and magnetic field sensor is proposed and experimentally demonstrated utilizing a fiber-optic Mach–Zehnder interferometer (MZI) structure. In our setup, one of the interferometer arms is coated with magnetic nanoparticles. The MZI comprises a laser source emitting an optical signal, split by a coupler into two signals propagated by a reference fiber and a sensor fiber. The sensing fiber is encased in cobalt ferrite (CoFe2O4). Upon exposure to a magnetic field, CoFe2O4 induces vibration in the fiber, modifying the sensor’s transmission and causing an imbalance between the optical signals of the interferometer arms. This enables us to evaluate the sensor performance regarding sensitivity, accuracy, and saturation. The nanoparticles were synthesized using the protein sol–gel method, resulting in an average crystallite size of 8, 27, and 67 nm for 623, 773, and 1073 K, respectively. Sample characterizations were conducted through X-ray fluorescence, X-ray diffraction, VSM magnetic measurements, and Mössbauer spectroscopy for further analysis of the performance. The sensor exhibited a linear response, achieving a maximum regression between 93.0% and 98.6% across all sample points in the 0 to 150 Oe range, with an output power of approximately 20 dBm, correlated with the applied magnetic field. Sensitivity was measured at 1.15, 0.93, and 1.41 dB/Oe. Previous studies have correlated the horizontal width of the hysteresis loop with sensor saturation. However, by employing a different coating in this work, we complement these findings by demonstrating that the sensor does not saturate if the maximum applied field is smaller than the hysteresis loop width.