Photonics (Aug 2024)

Research and Improvement in Magnetic Field Sensors Using Mach–Zehnder Interferometer with Cobalt Ferrite Nanoparticles

  • Francisco Willame Coelho de Vasconcelos,
  • Matheus Rodrigues Araújo,
  • Luana Samara Paulino Maia,
  • Lidia Quirino Rodrigues,
  • Ianna Karollayne Alencar da Silva,
  • João Isaac Silva Miranda,
  • José Marcos Sasaki,
  • Marcus Aurélio Ribeiro Miranda,
  • Joacir Soares de Andrade,
  • Yosdan Martinez Camejo,
  • Glendo de Freitas Guimarães

DOI
https://doi.org/10.3390/photonics11090806
Journal volume & issue
Vol. 11, no. 9
p. 806

Abstract

Read online

In this work, a current and magnetic field sensor is proposed and experimentally demonstrated utilizing a fiber-optic Mach–Zehnder interferometer (MZI) structure. In our setup, one of the interferometer arms is coated with magnetic nanoparticles. The MZI comprises a laser source emitting an optical signal, split by a coupler into two signals propagated by a reference fiber and a sensor fiber. The sensing fiber is encased in cobalt ferrite (CoFe2O4). Upon exposure to a magnetic field, CoFe2O4 induces vibration in the fiber, modifying the sensor’s transmission and causing an imbalance between the optical signals of the interferometer arms. This enables us to evaluate the sensor performance regarding sensitivity, accuracy, and saturation. The nanoparticles were synthesized using the protein sol–gel method, resulting in an average crystallite size of 8, 27, and 67 nm for 623, 773, and 1073 K, respectively. Sample characterizations were conducted through X-ray fluorescence, X-ray diffraction, VSM magnetic measurements, and Mössbauer spectroscopy for further analysis of the performance. The sensor exhibited a linear response, achieving a maximum regression between 93.0% and 98.6% across all sample points in the 0 to 150 Oe range, with an output power of approximately 20 dBm, correlated with the applied magnetic field. Sensitivity was measured at 1.15, 0.93, and 1.41 dB/Oe. Previous studies have correlated the horizontal width of the hysteresis loop with sensor saturation. However, by employing a different coating in this work, we complement these findings by demonstrating that the sensor does not saturate if the maximum applied field is smaller than the hysteresis loop width.

Keywords