Nanomaterials (Jul 2020)

Photocatalytic and Electrocatalytic Properties of NGr-ZnO Hybrid Materials

  • Florina Pogacean,
  • Maria Ştefan,
  • Dana Toloman,
  • Adriana Popa,
  • Cristian Leostean,
  • Alexandru Turza,
  • Maria Coros,
  • Ovidiu Pana,
  • Stela Pruneanu

DOI
https://doi.org/10.3390/nano10081473
Journal volume & issue
Vol. 10, no. 8
p. 1473

Abstract

Read online

N-doped graphene-ZnO hybrid materials with different N-doped graphene:ZnO wt% ratios (1:10; 1:20; 1:30) were prepared by a simple and inexpensive sol-gel method. The materials denoted NGr-ZnO-1 (1:10), NGr-ZnO-2 (1:20), and NGr-ZnO-3 (1:30) were investigated with advanced techniques and their morpho-structural, photocatalytic, and electrocatalytic properties were reported. Hence, pure N-doped graphene sample contains flakes with the size ranging from hundreds of nanometers to micrometers. In the case of all NGr-ZnO hybrid materials, the flakes appear heavily decorated with ZnO nanoparticles, having a cauliflower-like morphology. The X-ray powder diffraction (XRD) investigation of N-doped graphene sample revealed that it was formed by a mixture of graphene oxide, few-and multi-layer graphene. After the ZnO nanoparticles were attached to graphene, major diffraction peaks corresponding to crystalline planes of ZnO were seen. The qualitative and quantitative compositions of the samples were further evidenced by X-ray photoelectron spectroscopy (XPS). In addition, UV photoelectron spectroscopy (UPS) spectra allowed the determination of the ionization energy and valence band maxima. The energy band alignment of the hybrid materials was established by combining UV–Vis with UPS results. A high photocatalytic activity of NGr-ZnO samples against rhodamine B solution was observed. The associated reactive oxygen species (ROS) generation was monitored by electron paramagnetic resonance (EPR)-spin trapping technique. In accordance with bands alignment and identification of radical species, the photocatalytic mechanism was elucidated.

Keywords