International Journal of Nanomedicine (Jul 2014)

Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes

  • Subongkot T,
  • Pamornpathomkul B,
  • Rojanarata T,
  • Opanasopit P,
  • Ngawhirunpat T

Journal volume & issue
Vol. 2014, no. Issue 1
pp. 3539 – 3550

Abstract

Read online

Thirapit Subongkot, Boonnada Pamornpathomkul, Theerasak Rojanarata, Praneet Opanasopit, Tanasait Ngawhirunpat Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: This study aimed to determine the mechanism by which ultradeformable liposomes (ULs) with terpenes enhance skin penetration for transdermal drug delivery of fluorescein sodium, using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Skin treated with ULs containing d-limonene, obtained from in vitro skin penetration studies, was examined via TEM to investigate the effect of ULs on ultrastructural changes of the skin, and to evaluate the mechanism by which ULs enhance skin penetration. The receiver medium collected was analyzed by TEM and CLSM to evaluate the mechanism of the drug carrier system. Our findings revealed that ULs could enhance penetration by denaturing intracellular keratin, degrading corneodesmosomes, and disrupting the intercellular lipid arrangement in the stratum corneum. As inferred from the presence of intact vesicles in the receiver medium, ULs are also able to act as a drug carrier system. CLSM images showed that intact vesicles of ULs might penetrate the skin via a transappendageal pathway, potentially a major route of skin penetration. Keywords: ultradeformable liposomes, mechanism of enhanced skin penetration, transmission electron microscopy, confocal laser scanning microscopy