A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning
Keling Tu,
Shaozhe Wen,
Ying Cheng,
Yanan Xu,
Tong Pan,
Haonan Hou,
Riliang Gu,
Jianhua Wang,
Fengge Wang,
Qun Sun
Affiliations
Keling Tu
Department of Plant Genetics & Breeding and Seed Science, College of Agronomy and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University/The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research
Shaozhe Wen
Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)
Ying Cheng
Department of Plant Genetics & Breeding and Seed Science, College of Agronomy and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University/The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research
Yanan Xu
Department of Plant Genetics & Breeding and Seed Science, College of Agronomy and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University/The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research
Tong Pan
Department of Plant Genetics & Breeding and Seed Science, College of Agronomy and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University/The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research
Haonan Hou
Department of Plant Genetics & Breeding and Seed Science, College of Agronomy and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University/The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research
Riliang Gu
Department of Plant Genetics & Breeding and Seed Science, College of Agronomy and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University/The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research
Jianhua Wang
Department of Plant Genetics & Breeding and Seed Science, College of Agronomy and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University/The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research
Fengge Wang
Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)
Qun Sun
Department of Plant Genetics & Breeding and Seed Science, College of Agronomy and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University/The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research
Abstract Background Variety genuineness and purity are essential indices of maize seed quality that affect yield. However, detection methods for variety genuineness are time-consuming, expensive, require extensive training, or destroy the seeds in the process. Here, we present an accurate, high-throughput, cost-effective, and non-destructive method for screening variety genuineness that uses seed phenotype data with machine learning to distinguish between genetically and phenotypically similar seed varieties. Specifically, we obtained image data of seed morphology and hyperspectral reflectance for Jingke 968 and nine other closely-related varieties (non-Jingke 968). We then compared the robustness of three common machine learning algorithms in distinguishing these varieties based on the phenotypic imaging data. Results Our results showed that hyperspectral imaging (HSI) combined with a multilayer perceptron (MLP) or support vector machine (SVM) model could distinguish Jingke 968 from varieties that differed by as few as two loci, with a 99% or higher accuracy, while machine vision imaging provided ~ 90% accuracy. Through model validation and updating with varieties not included in the training data, we developed a genuineness detection model for Jingke 968 that effectively discriminated between genetically similar and distant varieties. Conclusions This strategy has potential for wide adoption in large-scale variety genuineness detection operations for internal quality control or governmental regulatory agencies, or for accelerating the breeding of new varieties. Besides, it could easily be extended to other target varieties and other crops.