PLoS ONE (Jan 2012)

Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies.

  • Edina Prondvai,
  • Koen Stein,
  • Attila Osi,
  • Martin P Sander

DOI
https://doi.org/10.1371/journal.pone.0031392
Journal volume & issue
Vol. 7, no. 2
p. e31392

Abstract

Read online

Rhamphorhynchus from the Solnhofen Limestones is the most prevalent long tailed pterosaur with a debated life history. Whereas morphological studies suggested a slow crocodile-like growth strategy and superprecocial volant hatchlings, the only histological study hitherto conducted on Rhamphorhynchus concluded a relatively high growth rate for the genus. These controversial conclusions can be tested by a bone histological survey of an ontogenetic series of Rhamphorhynchus.Our results suggest that Bennett's second size category does not reflect real ontogenetic stage. Significant body size differences of histologically as well as morphologically adult specimens suggest developmental plasticity. Contrasting the 'superprecocial hatchling' hypothesis, the dominance of fibrolamellar bone in early juveniles implies that hatchlings sustained high growth rate, however only up to the attainment of 30-50% and 7-20% of adult wingspan and body mass, respectively. The early fast growth phase was followed by a prolonged, slow-growth phase indicated by parallel-fibred bone deposition and lines of arrested growth in the cortex, a transition which has also been observed in Pterodaustro. An external fundamental system is absent in all investigated specimens, but due to the restricted sample size, neither determinate nor indeterminate growth could be confirmed in Rhamphorhynchus.The initial rapid growth phase early in Rhamphorhynchus ontogeny supports the non-volant nature of its hatchlings, and refutes the widely accepted 'superprecocial hatchling' hypothesis. We suggest the onset of powered flight, and not of reproduction as the cause of the transition from the fast growth phase to a prolonged slower growth phase. Rapidly growing early juveniles may have been attended by their parents, or could have been independent precocial, but non-volant arboreal creatures until attaining a certain somatic maturity to get airborne. This study adds to the understanding on the diversity of pterosaurian growth strategies.