Applied Sciences (Nov 2022)
Enhancement of Question Answering System Accuracy via Transfer Learning and BERT
Abstract
Entity linking and predicate matching are two core tasks in the Chinese Knowledge Base Question Answering (CKBQA). Compared with the English entity linking task, the Chinese entity linking is extremely complicated, making accurate Chinese entity linking difficult. Meanwhile, strengthening the correlation between entities and predicates is the key to the accuracy of the question answering system. Therefore, we put forward a Bidirectional Encoder Representation from Transformers and transfer learning Knowledge Base Question Answering (BAT-KBQA) framework, which is on the basis of feature-enhanced Bidirectional Encoder Representation from Transformers (BERT), and then perform a Named Entity Recognition (NER) task, which is appropriate for Chinese datasets using transfer learning and the Bidirectional Long Short-Term Memory-Conditional Random Field (BiLSTM-CRF) model. We utilize a BERT-CNN (Convolutional Neural Network) model for entity disambiguation of the problem and candidate entities; based on the set of entities and predicates, a BERT-Softmax model with answer entity predicate features is introduced for predicate matching. The answer ultimately chooses to integrate entities and predicates scores to determine the definitive answer. The experimental results indicate that the model, which is developed by us, considerably enhances the overall performance of the Knowledge Base Question Answering (KBQA) and it has the potential to be generalizable. The model also has better performance on the dataset supplied by the NLPCC-ICCPOL2016 KBQA task with a mean F1 score of 87.74% compared to BB-KBQA.
Keywords