Advances in Nonlinear Analysis (Oct 2023)

Supersolutions to nonautonomous Choquard equations in general domains

  • Aghajani Asadollah,
  • Kinnunen Juha

DOI
https://doi.org/10.1515/anona-2023-0107
Journal volume & issue
Vol. 12, no. 1
pp. 423 – 443

Abstract

Read online

We consider the nonlocal quasilinear elliptic problem: −Δmu(x)=H(x)((Iα*(Qf(u)))(x))βg(u(x))inΩ,-{\Delta }_{m}u\left(x)=H\left(x){(\left({I}_{\alpha }* \left(Qf\left(u)))\left(x))}^{\beta }g\left(u\left(x))\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega , where Ω\Omega is a smooth domain in RN{{\mathbb{R}}}^{N}, β≥0\beta \ge 0, Iα{I}_{\alpha }, 00f\left(s),g\left(s)\gt 0 for s>0s\gt 0, and H,Q:Ω→RH,Q:\Omega \to {\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities ff and gg such as eu,(1+u)p{e}^{u},{\left(1+u)}^{p}, and (1−u)−p{\left(1-u)}^{-p}, p>1p\gt 1. We also discuss the Liouville-type results in unbounded domains.

Keywords