Journal of Analytical Science and Technology (Sep 2021)
A facile synthesis of GO/CuO-blended nanofiber sensor electrode for efficient enzyme-free amperometric determination of glucose
Abstract
Abstract The development of biosensors with innovative nanomaterials is crucial to enhance the sensing performance of as-prepared biosensors. In the present research work, we prepared copper (II) oxide (CuO) and graphene oxide (GO) composite nanofibers using the hydrothermal synthesis route. The structural and morphological properties of as-prepared GO/CuO nanofibers were analyzed using an X-ray diffractometer, field-emission scanning, energy dispersive X-ray analysis, Fourier transmission infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicated GO/CuO nanofibers exhibit nanosized diameters and lengths in the order of micrometers. These GO/CuO nanofibers were employed to prepare non-enzymatic biosensors (GO/CuO nanofibers/FTO (fluorine-doped tin oxide)) modified electrodes for enhanced glucose detection. The sensing performance of the biosensors was evaluated using linear sweep voltammetry (LSV) and chronoamperometry in phosphate buffer solution (PBS). GO/CuO/FTO biosensor achieved high sensitivity of 1274.8 μA mM−1cm−2 having a linear detection range from 0.1 to 10 mM with the lower detection limit (0.13 μM). Further, the prepared biosensor showed good reproducibility repeatability, excellent selectivity, and long-time stability. Moreover, the technique used for the preparation of the GO/CuO composite is simple, rapid, cost-effective, and eco-friendly. These electrodes are employed for the detection of glucose in blood serum with RSD ~ 1.58%.
Keywords