Heliyon (Jan 2024)
Evaluation of the influence of different build angles on the surface characteristics, accuracy, and dimensional stability of the complete denture base printed by digital light processing
Abstract
Purpose: This study aims to investigate the influence of the build angle on the surface characteristics, accuracy, and dimensional stability of digital light processing (DLP) printed resin bases. Material and methods: Rectangular and complete denture base samples were fabricated at 0, 45, and 90-degree angles (n = 5 for rectangular samples; n = 10 for maxillary and mandibular denture base samples) using a DLP printer. Surface morphology and roughness were assessed using a profilometer, followed by measuring hydrophilicity with a contact angle meter. Accuracy (trueness and precision) and dimensional stability were evaluated at intervals of 1, 3, 7, 14, 28, and 42 days after base printing using best-fit-alignment and deviation analysis in 3D software. Statistical analysis was performed using one-way ANOVA for surface characteristics (α = 0.05), multi-way ANOVA for accuracy and dimensional stability data, and Tukey's test for post-hoc comparisons. Results: The 0-degree group exhibited significantly lower mean roughness (1.27 ± 0.19 μm) and contact angle (80.50 ± 3.71°) (P < 0.001) compared to the 90-degree and 45-degree groups. The 0-degree build angle led to superior trueness (maxilla: 77.80 ± 9.35 μm, mandible: 61.67 ± 10.32 μm) and precision (maxilla: 27.51 ± 7.43 μm, mandible: 53.50 ± 15.16 μm) compared to other groups (P < 0.001). Maxillary base precision was superior to mandibular base precision (P < 0.001). The maxillary base exhibited less dimensional deviation than the mandibular base. The 90-degree group showed the highest deviation compared to the other two groups, and all groups' deviations increased over time (P < 0.001). Conclusions: The build angle significantly influences the surface characteristics, accuracy, and dimensional stability of DLP-printed denture bases. A 0-degree build angle provides the most favorable performance. The maxillary base displayed superior precision and dimensional stability than the mandibular base.