Journal of Function Spaces (Jan 2020)
Boundedness of Singular Integral Operators with Operator-Valued Kernels and Maximal Regularity of Sectorial Operators in Variable Lebesgue Spaces
Abstract
This paper is devoted to the maximal regularity of sectorial operators in Lebesgue spaces Lp⋅ with a variable exponent. By extending the boundedness of singular integral operators in variable Lebesgue spaces from scalar type to abstract-valued type, the maximal Lp⋅−regularity of sectorial operators is established. This paper also investigates the trace of the maximal regularity space E01,p⋅I, together with the imbedding property of E01,p⋅I into the range-varying function space C−I,X1−1/p⋅,p⋅. Finally, a type of semilinear evolution equations with domain-varying nonlinearities is taken into account.