EPJ Web of Conferences (Jan 2020)
Monte-Carlo calculation of fission process for neutron-induced typical actinide nuclei fission
Abstract
A global potential-driving model with well-determined parameters is proposed by uniting the empirical asymmetric fission potential and the empirical symmetric fission potential, which can precisely calculate the pre-neutron-emission mass distributions for neutron-induced actinide nuclei fission. Based on the developed potential-driving model, Monte-Carlo code calculates the characteristics of fission reaction process for neutron-induced 241 Am fission. Typical calculated results, including yields, kinetic energy distributions, fission neutron spectrum and decay γ-ray spectrum, are compared with experimental data and evaluated data. It shows that the Monte-Carlo calculated results agree quite well with the experiment data, which indicate that Monte-Carlo code with the developed potential-driving model can reproduce and predict the characteristics of fission reaction process at reasonable energy ranges. Given the well predictions on the characteristics of fission reaction process, Monte-Carlo code with the developed potential-driving model can guide for the physical design of nuclear fission engineering.