Insects (Jan 2021)

Characterization of Two Small Heat Shock Protein Genes (<i>Hsp17.4</i> and <i>Hs20.3</i>) from <i>Sitodiplosis mosellana</i>, and Their Expression Regulation during Diapause

  • Jiajia Zhao,
  • Qitong Huang,
  • Guojun Zhang,
  • Keyan Zhu-Salzman,
  • Weining Cheng

DOI
https://doi.org/10.3390/insects12020119
Journal volume & issue
Vol. 12, no. 2
p. 119

Abstract

Read online

Sitodiplosis mosellana, a periodic but devastating wheat pest that escapes temperature extremes in summer and winter by undergoing obligatory diapause. To determine the roles of small heat shock proteins (sHsps) in diapause of S. mosellana, we characterized two sHsp genes, SmHsp17.4 and SmHsp20.3, from this species. Both SmHsps contained the conserved α-crystallin domain and the carboxy-terminal I/VXI/V motif of the sHsp family. SmHsp17.4 had one intron while SmHsp20.3 had none. Quantitative PCR revealed that SmHsp17.4 expression decreased after diapause initiation, but substantially increased during transition to post-diapause quiescence. In contrast, SmHsp20.3 expression was not affected by entry of diapause, but was clearly up-regulated during summer and winter. Short-term more severe heat-stress (≥35 °C) of over-summering larvae or cold-stress (≤−5 °C) of over-wintering larvae could stimulate higher expression of both genes, and SmHsp17.4 was more responsive to cold stress while SmHsp20.3 was more sensitive to heat stress. Notably, transcription of SmHsp17.4, but not SmHsp20.3, in diapausing larvae was inducible by 20-hydroxyecdysone (20E). Recombinant SmHsp17.4 and SmHsp20.3 proteins also displayed significant chaperone functionality. These findings suggest that both SmHsps play key roles in stress tolerance during diapause; and 20E-regulated SmHsp17.4 was also likely involved in diapause termination.

Keywords