Anatolian Journal of Cardiology (May 2022)

MiRNA-615-3p Alleviates Oxidative Stress Injury of Human Cardiomyocytes Via PI3K/Akt Signaling by Targeting MEF2A

  • Dongying Zhang,
  • Gang Zhang,
  • Kun Yu,
  • Xiwen Zhang,
  • Aixia Jiang

DOI
https://doi.org/10.5152/AnatolJCardiol.2021.901
Journal volume & issue
Vol. 26, no. 5
pp. 373 – 381

Abstract

Read online

Background: Myocardial infarction, a coronary heart disease, is a serious hazard to human health. Cardiomyocyte oxidative stress and apoptosis have been considered as the main causes of myocardial infarction. Here, we aimed to investigate the role of miR-615-3p in oxidative stress and apoptosis of human cardiomyocytes. Methods: Reverse transcription-quantitative polymerase chain reaction was performed to determine miR-615-3p or MEF2A expression in human cardiomyocytes. Apoptosis and viability of human cardiomyocytes were assessed by flow cytometry analysis and CCK-8 assay. In addition, the contents of malondialdehyde, reactive oxygen species, and superoxide dismutase were detected by corresponding commercial kits. The binding of miR-615-3p and MEF2A in human cardiomyocytes was examined by luciferase reporter assay. Results: Hypoxia/reoxygenation treatment downregulated the expression level of miR‐615-3p in human cardiomyocytes. Overexpressing miR-615-3p increased human cardiomyocyte viability and decreased human cardiomyocyte apoptosis. Moreover, miR-615-3p mimics suppressed oxidative stress in hypoxia/reoxygenation-stimulated human cardiomyocytes. MEF2A was confirmed as a target gene of miR-615-3p and was highly expressed in hypoxia/reoxygenation-stimulated human cardiomyocytes, and its upregulation partially reversed the influence of miR-615-3p mimics on oxidative stress and apop-tosis of human cardiomyocytes. Moreover, miR-615-3p inactivated the P13K/Akt pathway by inhibiting MEF2A. Conclusions: Overexpression of miR-615-3p protects human cardiomyocytes from oxida-tive stress injury by targeting MEF2A via the PI3K/Akt signaling.

Keywords