Earth, Planets and Space (Oct 2023)
Shear-wave velocity determination by combining data from passive and active source field investigations in Kumamoto city, Japan
Abstract
Abstract We present the 1D subsoil structure and local site effects at KUMA strong ground motion station in Kumamoto City, Japan. We analyze data from a field campaign conducted in the framework of the Blind Prediction BP1 test of the 6th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion. In parallel with other participants of the BP1 test, we process data from passive and active source measurements aiming to determine the shear-wave velocity, Vs, structure and the site response at KUMA station. Passive measurements are associated to five microtremor arrays. In each array, seven seismometers have been deployed in a common-center triangle shape, recording microtremors simultaneously for 1 to 2 h. The vertical component of microtremors was analyzed using the spatial autocorrelation (SPAC) method. Cross-correlation coefficients were computed for all station pairs available for each array. By fitting the average SPAC’s coefficients to the first-kind zero-order Bessel function, J0, and assuming that microtremors primarily comprise fundamental mode Rayleigh waves, phase velocity dispersion curves were determined. Phase velocity values for frequencies > 15 Hz were obtained from data of a close-by active source geophone profile. We integrated the data with those of the passive measurements and obtained an experimental phase velocity dispersion curve. The resulting curve shows low velocity variation, from 150 to 200 m/s, in the surface layers, whereas significant dispersion appears in frequencies below 2.5 Hz. By inverting this curve, we achieved to determine the 1D shear-wave velocity structure at KUMA station. Site response characteristics were determined by applying the Horizontal-to-Vertical-Spectral-Ratios method. Significantly amplified peaks in the frequency range between 0.3 to 1.5 Hz dominate HVSR spectral ratios. These peaks correspond to resonant frequencies of soils and originate from different impedance contrasts within the substratum of the site. Graphical Abstract
Keywords