Journal of the American Society for Horticultural Science (Jul 2022)
Effects of Water-deficit Stress and Gibberellic Acid on Floral Gene Expression and Floral Determinacy in ‘Washington’ Navel Orange
Abstract
Effects of water-deficit stress and foliar-applied gibberellic acid (GA3) on ‘Washington’ navel orange (Citrus sinensis) floral gene expression and inflorescence number were quantified. Trees subjected to 8 weeks of water-deficit stress [average stem water potential (SWP) −2.86 MPa] followed by 3 weeks of re-irrigation (SWP recovered to > −1.00 MPa) produced more inflorescences in week 11 than trees well-irrigated (SWP > −1.00 MPa) for the full 11 weeks (P < 0.001). After 8 weeks of water-deficit stress, bud expression of flowering locus t (FT), suppressor of overexpression of constans1 (SOC1), leafy (LFY), apetala1 (AP1), apetala2 (AP2), sepallata1 (SEP1), pistillata (PI), and agamous (AG) increased during the re-irrigation period (weeks 9 and 10), but only AP1, AP2, SEP1, PI, and AG expression increased to levels significantly greater than that of well-irrigated trees. Foliar-applied GA3 (50 mg·L−1) in weeks 2 through 8 of the water-deficit stress treatment did not reduce bud FT, SOC1, or LFY expression, but prevented the upregulation AP1, AP2, SEP1, PI, and AG expression that occurred during re-irrigation in water-deficit stressed trees not treated with GA3. Applications of GA3 to water-deficit stressed trees reduced inflorescence number 95% compared with stressed trees without GA3. Thus, GA3 inhibited citrus (Citrus sp.) floral development in response to water-deficit stress through downregulating AP1 and AP2 expression, which likely led to the failed activation of the downstream floral organ identity genes. The results reported herein suggest that bud determinacy and subsequent floral development in response to water-deficit stress in ‘Washington’ navel orange are controlled by AP1 and AP2 transcript levels, which regulate downstream floral organ identity gene activity and the effect of GA3 on citrus flower formation. The water-deficit stress floral-induction pathway provides an alternative to low-temperature induction that increases the potential for successful flowering in citrus trees grown in areas experiencing warmer, drier winters due to global climate change.
Keywords