Applied Mechanics (Apr 2021)

Experimental Investigation of the Temperature Effect on the Mechanical Properties of Hemp Woven Fabrics Reinforced Polymer

  • Sheedev Antony,
  • Abel Cherouat,
  • Guillaume Montay

DOI
https://doi.org/10.3390/applmech2020015
Journal volume & issue
Vol. 2, no. 2
pp. 239 – 256

Abstract

Read online

Natural fiber composites are widely used in a several industrial applications due to their outstanding biodegradability and recyclability. Thermal compression molding is a rapid and easy method to fabricate composite sheets. To better understand the manufacturing process and evaluate the mechanical properties of hemp woven fabrics reinforced thermoplastic composite at elevated temperatures, a detailed investigation is required. In this study, composite sheets were initially fabricated using hemp fiber fabrics (taffeta and serge 2×1) and polypropylene sheets by the thermal compression molding process. Mechanical tests (uniaxial, shear, and biaxial) were carried out at temperatures ranging from 20 to 160 ∘C in order to estimate the mechanical properties of composite sheets. Non-linear behavior was observed during the loading due to the unbalanced weaving pattern of hemp fabric. The biaxial behavior of the composite was estimated using a theoretical method for fabric strength prediction taking into account the interaction effect between the yarns. The experimental results demonstrate that, at high temperature, the polymer softens and the fiber reinforcements dismantle which resulting in a decrease in the mechanical properties of the composite. Two analytical models (Ha & Springer and thermal expansion coefficient) were also proposed to estimate the thermo-mechanical properties of natural fiber composites subjected to various temperatures.

Keywords