International Journal of Molecular Sciences (Nov 2022)

Comparative Preclinical Evaluation of Peptide-Based Chelators for the Labeling of DARPin G3 with <sup>99m</sup>Tc for Radionuclide Imaging of HER2 Expression in Cancer

  • Mariia Larkina,
  • Evgenii Plotnikov,
  • Ekaterina Bezverkhniaia,
  • Yulia Shabanova,
  • Maria Tretyakova,
  • Feruza Yuldasheva,
  • Roman Zelchan,
  • Alexey Schulga,
  • Elena Konovalova,
  • Anzhelika Vorobyeva,
  • Javad Garousi,
  • Torbjörn Gräslund,
  • Mikhail Belousov,
  • Vladimir Tolmachev,
  • Sergey Deyev

DOI
https://doi.org/10.3390/ijms232113443
Journal volume & issue
Vol. 23, no. 21
p. 13443

Abstract

Read online

Non-invasive radionuclide imaging of human epidermal growth factor receptor type 2 (HER2) expression in breast, gastroesophageal, and ovarian cancers may stratify patients for treatment using HER2-targeted therapeutics. Designed ankyrin repeat proteins (DARPins) are a promising type of targeting probe for radionuclide imaging. In clinical studies, the DARPin [99mTc]Tc-(HE)3-G3 labeled using a peptide-based chelator His-Glu-His-Glu-His-Glu ((HE)3), provided clear imaging of HER2 expressing breast cancer 2–4 h after injection. The goal of this study was to evaluate if the use of cysteine-containing peptide-based chelators Glu-Glu-Glu-Cys (E3C), Gly-Gly-Gly-Cys (G3C), and Gly-Gly-Gly-Ser-Cys connected via a (Gly-Gly-Gly-Ser)3-linker (designated as G3-(G3S)3C) would further improve the contrast of imaging using 99mTc-labeled derivatives of G3. The labeling of the new variants of G3 provided a radiochemical yield of over 95%. Labeled G3 variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 1.9–5 nM. Biodistribution of [99mTc]Tc-G3-G3C, [99mTc]Tc-G3-(G3S)3C, and [99mTc]Tc-G3-E3C in mice was compared with the biodistribution of [99mTc]Tc-(HE)3-G3. It was found that the novel variants provide specific accumulation in HER2-expressing human xenografts and enable discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-(HE)3-G3 provided better contrast between tumors and the most frequent metastatic sites of HER2-expressing cancers and is therefore more suitable for clinical applications.

Keywords