Discrete Dynamics in Nature and Society (Jan 2020)
A Time-Varying Multivariate Noncentral Contaminated Normal Copula Model and Its Application to the Visualized Dependence Analysis of Hong Kong Stock Markets
Abstract
Financial data usually have the features of complexity and interdependence structure, such as asymmetric, tail, and time-varying dependence. This study constructs a new multivariate skewed fat-tailed copula, namely, noncentral contaminated normal (NCCN) copula, to analyze the dependent structure of financial market data. The dynamic conditional correlation (DCC) model is also incorporated into constructing the time-varying NCCN copula model. This study comprehensively examines the effects of the DCC-NCCN copula and related models on fitting dependence structures of Hong Kong stock markets. The results show that the DCC-NCCN copula model can better depict the dependence structures of returns. Considering the flexibility and complexity, the DCC-NCCN copula model is a relatively ideal, time-varying, multivariate skewed fat-tailed copula model.