Journal of Orthopaedics and Traumatology (Aug 2018)

Can tape–screw fixation of a quadrupled semitendinosus graft in a full-length tibial tunnel provide superior fixation compared with a doubled semitendinosus–gracilis held with an interference screw? A matched-pair cadaveric biomechanical comparison

  • Christopher J. Vertullo,
  • Joseph Cadman,
  • Dané Dabirrahmani,
  • Richard Appleyard

DOI
https://doi.org/10.1186/s10195-018-0495-x
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background In anterior cruciate ligament reconstruction, quadrupled semitendinosus (Quad ST) grafts have potential advantages over doubled semitendinosus–gracilis (ST/G) including larger diameter and gracilis preservation, however the ideal tibial fixation method of the resultant shorter Quad ST graft remains elusive if a fixed-loop suspensory fixation device is used on the femur. We investigated whether the tibial fixation biomechanical properties of a Quad ST fixed indirectly with polyethylene terephthalate tape tied over a screw in a full outside-in created tunnel was superior to a ST/G graft fixed with an interference screw. Materials and methods In a controlled laboratory study, six cadaveric matched pairs of each construct were subjected to cyclic loading to mimic physiologic loading during rehabilitation. This included preconditioning cycling, cyclic loading to 220 N for 500 cycles, then cyclic loading to 500 N for 500 cycles. Results High standard deviations across the measured parameters occurred with no significant difference between measured parameters of elongation for the different constructs. Elongation of the Quad-ST construct was greater at 10 and 100 cycles, but not statistically different. Four of the six Quad-ST constructs failed below 100 cycles, compared with two failures below 100 cycles in the ST/G construct. There was a strong correlation between cycles to failure and bone mineral density for the Quad ST-tape constructs. Conclusions Tibial fixation of Quad ST with a tied tape–screw construct in a full-length tunnel was not biomechanically superior to ST/G graft fixed with an interference screw, exhibited greater nonsignificant construct elongation with earlier failure, and was more reliant on bone mineral density. Level of evidence In vitro laboratory study.

Keywords