Polymers (Oct 2018)

Amino Functionalization of Reduced Graphene Oxide/Tungsten Disulfide Hybrids and Their Bismaleimide Composites with Enhanced Mechanical Properties

  • Liulong Guo,
  • Hongxia Yan,
  • Zhengyan Chen,
  • Qi Liu,
  • Yuanbo Feng,
  • Fan Ding,
  • Yufeng Nie

DOI
https://doi.org/10.3390/polym10111199
Journal volume & issue
Vol. 10, no. 11
p. 1199

Abstract

Read online

A novel graphene-based nanocomposite particles (NH2-rGO/WS2), composed of reduced graphene oxide (rGO) and tungsten disulfide (WS2) grafted with active amino groups (NH2-rGO/WS2), was successfully synthesized by an effective and facile method. NH2-rGO/WS2 nanoparticles were then used to fabricate new bismaleimide (BMI) composites (NH2-rGO/WS2/BMI) via a casting method. The results demonstrated that a suitable amount of NH2-rGO/WS2 nanoparticles significantly improved the mechanical properties of the BMI resin. When the loading of NH2-rGO/WS2 was only 0.6 wt %, the impact and flexural strength of the composites increased by 91.3% and 62.6%, respectively, compared to the neat BMI resin. Rare studies have reported such tremendous enhancements on the mechanical properties of the BMI resin with trace amounts of fillers. This is attributable to the unique layered structure of NH2-rGO/WS2 nanoparticles, fine interfacial adhesion, and uniform dispersion of NH2-rGO/WS2 in the BMI resin. Besides, the thermal gravimetrical analysis (TGA) revealed that the addition of NH2-rGO/WS2 could also improve the stability of the composites.

Keywords