Electrochem (Jan 2021)

Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack

  • Seyed Saeed Madani,
  • Erik Schaltz,
  • Søren Knudsen Kær

DOI
https://doi.org/10.3390/electrochem2010005
Journal volume & issue
Vol. 2, no. 1
pp. 50 – 63

Abstract

Read online

This investigation’s primary purpose was to illustrate the cooling mechanism within a lithium titanate oxide lithium-ion battery pack through the experimental measurement of heat generation inside lithium titanate oxide batteries. Dielectric water/glycol (50/50), air and dielectric mineral oil were selected for the lithium titanate oxide battery pack’s cooling purpose. Different flow configurations were considered to study their thermal effects. Within the lithium-ion battery cells in the lithium titanate oxide battery pack, a time-dependent amount of heat generation, which operated as a volumetric heat source, was employed. It was assumed that the lithium-ion batteries within the battery pack had identical initial temperature conditions in all of the simulations. The lithium-ion battery pack was simulated by ANSYS to determine the temperature gradient of the cooling system and lithium-ion batteries. Simulation outcomes demonstrated that the lithium-ion battery pack’s temperature distributions could be remarkably influenced by the flow arrangement and fluid coolant type.

Keywords