Revista Técnica de la Facultad de Ingeniería (Aug 2006)

Regression models for the prediction of high impact polystyrene properties using operational variables

  • Diana Soto,
  • Jorge Alaña,
  • Haydee Oliva

Journal volume & issue
Vol. 29, no. 2
pp. 144 – 158

Abstract

Read online

En este trabajo, se proponen modelos neuronales y de regresión lineal multivariable para la predicción de algunas propiedades, empleadas para el control de calidad de diferentes grados de poliestireno de alto impacto (HIPS), a partir de las recetas y las condiciones operacionales en una planta industrial. Las propiedades consideradas fueron: índice de fluidez (IF), resistencia al impacto Izod (IZOD), resistencia a la fluencia (RF), resistencia a la ruptura (RR) y porcentaje de elongación (PE). En la validación se obtuvieron sumas de los errores al cuadrado de 38,4, 7,16 × 10³, 116 y 103 para el índice de fluidez, resistencia al impacto Izod, resistencia a la fluencia y resistencia a la ruptura, respectivamente. El análisis de los coeficientes estandarizados de las ecuaciones de regresión indicó que las variables con mayor efecto sobre las propiedades fueron las concentraciones del agente de transferencia de cadena (tert-dodecilmercaptano) y de los lubricantes (estearato de zinc y aceite mineral). Los resultados obtenidos con los modelos neuronales y de regresión lineal fueron similares en la región operacional estudiada.In this work, we proposed models based on multiple linear regression analysis and artificial neural networks in order to predict some properties used for the quality control of different grades of high impact polystyrenes. These models were based on recipes and operational conditions in an industrial plant. The properties considered were melt flow index, Izod impact resistance, yield stress, break stress, percent elongation. In validation, the sum of the squares errors were 38,4, 7,16 × 10³, 116 and 103 for melt flow index, Izod impact resistance, yield stress and break stress, respectively. According to standardized coefficients of the regression equations, variables with most significant effects on the considered properties were the modifier concentration (tert-dodecylmercaptane), and lubricants (zinc stearate and mineral oil) concentrations. In the studied region, the performances of both models (linear regression and neural networks) were similar.

Keywords