A new visualization technology is presented, which was used in applied research when observing and modeling the dynamics of the flow of gaseous environments. In the process of developing and improving the technology, a set of experimental results was compiled to study the phenomenon of combustion and detonation of a hydrogen-oxygen mixture, as well as the phenomena of propagation, action, and interaction of shock waves and gas-dynamic structures. On the example of analyzing data on the dynamics of the formation of a vortex ring, the possibilities of verifying the computational model of the implemented physical process are shown. The presented results reflect the level of information content when using technology to carry out tests.