International Journal of Endocrinology (Jan 2012)

Nerium oleander Distillate Improves Fat and Glucose Metabolism in High-Fat Diet-Fed Streptozotocin-Induced Diabetic Rats

  • Ahmet Levent Bas,
  • Sule Demirci,
  • Nuray Yazihan,
  • Kamil Uney,
  • Ezgi Ermis Kaya

DOI
https://doi.org/10.1155/2012/947187
Journal volume & issue
Vol. 2012

Abstract

Read online

Diabetes was induced by intraperitoneal injection of streptozotocin (35 mg/kg bw) in all rats of five groups after being fed for 2 weeks high-fat diet. Type 2 diabetic Nerium-oleander- (NO-) administered groups received the NO distillate at a dose of 3.75, 37.5, and 375 μg/0.5 mL of distilled water (NO-0.1, NO-1, NO-10, resp.); positive control group had 0.6 mg glibenclamide/kg bw/d by gavage daily for 12 weeks. Type 2 diabetic negative control group had no treatment. NO distillate administration reduced fasting blood glucose, HbA1c, insulin resistance, total cholesterol, low density lipoprotein, atherogenic index, triglyceride-HDL ratio, insulin, and leptin levels. Improved beta cell function and HDL concentration were observed by NO usage. HDL percentage in total cholesterol of all NO groups was similar to healthy control. NO-10 distillate enhanced mRNA expressions of peroxisome proliferator-activated-receptor- (PPAR-) α, β, and γ in adipose tissue and PPAR-α–γ in liver. The findings from both in vivo and in vitro studies suggest that the considerable beneficial effect of NO distillate administration at a dose of 375 μg/0.5 mL of distilled water may offer new approaches to treatment strategies that target both fat and glucose metabolism in type 2 diabetes.