Energies (Mar 2024)

Shear Wave Velocity Applications in Geomechanics with Focus on Risk Assessment in Carbon Capture and Storage Projects

  • Mitra Khalilidermani,
  • Dariusz Knez

DOI
https://doi.org/10.3390/en17071578
Journal volume & issue
Vol. 17, no. 7
p. 1578

Abstract

Read online

Shear wave velocity (Vs) has significant applications in geoengineering investigations. With the ongoing rise in carbon capture and storage (CCS) initiatives, the role of Vs in monitoring the CO2 sequestration sites is escalating. Although many studies have been conducted to assess CCS-induced risks, no inclusive research has been conducted integrating those investigations. This study strives to collate and integrate the applications of Vs in geoscience with an emphasis on CCS risk assessment. Based on this research, major CCS-induced risks were detected: induced seismicity, caprock failure, groundwater contamination, fault reactivation, and reservoir deformation. These risks were inclusively described, and the mathematical formulations incorporating the Vs parameter in risk analysis were elaborated. It was concluded that Vs applications can be further extended in monitoring CO2 plume migration, optimizing CO2 injection pressures, preventing shallow water contamination, and predicting CCS-induced seismic events. All these applications require fully coupled hydromechanical analysis based on poroelasticity theory. Hence, various factors including pore pressure, in situ stresses, faults distribution, and poroelastic parameters must be carefully determined before the CO2 injection phase. The mathematical formulations presented in the present study are quite applicable for granting the safety and long-term success of subsurface carbon sequestration.

Keywords